BetterScholar BetterScholar
13
Title Level Year L/Y
Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?
Xiaochuan Pan, E. Sidky, M. Vannier
9 2009 9
2009
Inverse scattering transform for the Camassa–Holm equation
A. Constantin, V. Gerdjikov, R. Ivanov
8 2006 8
2006
Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)
Hao Gao, Hengyong Yu, S. Osher, Ge Wang
7 2011 7
2011
NETT: solving inverse problems with deep neural networks
Housen Li, Johannes Schwab, Stephan Antholzer, M. Haltmeier
7 2018 7
2018
Computed tomography reconstruction using deep image prior and learned reconstruction methods
D. O. Baguer, Johannes Leuschner, Maximilian Schmidt
7 2020 7
2020
High-order total variation minimization for interior tomography
Jiansheng Yang, Hengyong Yu, M. Jiang, Ge Wang
7 2010 7
2010
Contrast-enhanced microwave imaging of breast tumors: a computational study using 3D realistic numerical phantoms
J. D. Shea, P. Kosmas, B. D. Veen, S. Hagness
7 2010 7
2010
Joint reconstruction of PET-MRI by exploiting structural similarity
7 auth. Matthias Joachim Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. Hutton, ... S. Arridge
7 2014 7
2014
Solving the interior problem of computed tomography using a priori knowledge
M. Courdurier, F. Noo, M. Defrise, H. Kudo
7 2008 7
2008
Perturbation resilience and superiorization of iterative algorithms
Y. Censor, R. Davidi, G. Herman
7 2010 7
2010
Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography
7 auth. T. Bubba, Gitta Kutyniok, M. Lassas, M. März, W. Samek, S. Siltanen, ... Vignesh Srinivasan
7 2018 7
2018
Ensemble Kalman inversion: a derivative-free technique for machine learning tasks
Nikola B. Kovachki, A. Stuart
7 2018 7
2018
The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy
Quentin Denoyelle, V. Duval, G. Peyr'e, Emmanuel Soubies
6 2018 6
2018