BetterScholar BetterScholar
Title Claps Level Year L/Y
A Dominant STIM1 Mutation Causes Stormorken Syndrome
14 auth. D. Misceo, A. Holmgren, W. Louch, P. Holme, M. Mizobuchi, R. Morales, A. D. de Paula, A. Stray-Pedersen, R. Lyle, B. Dalhus, ... G. Christensen, H. Stormorken, G. Tjønnfjord, E. Frengen
Stormorken syndrome is a rare autosomal‐dominant disease with mild bleeding tendency, thrombocytopathy, thrombocytopenia, mild anemia, asplenia, tubular aggregate myopathy, miosis, headache, and ichthyosis. A heterozygous missense mutation in STIM1 …
Stormorken syndrome is a rare autosomal‐dominant disease with mild bleeding tendency, thrombocytopathy, thrombocytopenia, mild anemia, asplenia, tubular aggregate myopathy, miosis, headache, and ichthyosis. A heterozygous missense mutation in STIM1 exon 7 (c.910C>T; p.Arg304Trp) (NM_003156.3) was found to segregate with the disease in six Stormorken syndrome patients in four families. Upon sensing Ca2+ depletion in the endoplasmic reticulum lumen, STIM1 undergoes a conformational change enabling it to interact with and open ORAI1, a Ca2+ release‐activated Ca2+ channel located in the plasma membrane. The STIM1 mutation found in Stormorken syndrome patients is located in the coiled‐coil 1 domain, which might play a role in keeping STIM1 inactive. In agreement with a possible gain‐of‐function mutation in STIM1, blood platelets from patients were in a preactivated state with high exposure of aminophospholipids on the outer surface of the plasma membrane. Resting Ca2+ levels were elevated in platelets from the patients compared with controls, and store‐operated Ca2+ entry was markedly attenuated, further supporting constitutive activity of STIM1 and ORAI1. Thus, our data are compatible with a near‐maximal activation of STIM1 in Stormorken syndrome patients. We conclude that the heterozygous mutation c.910C>T causes the complex phenotype that defines this syndrome.
Published in Human Mutation
23
7 2014