Title | Claps | Level | Year | L/Y |
---|---|---|---|---|
Steady-state propofol brain:plasma and brain:blood partition coefficients and the effect-site equilibration paradox.
S. Dutta, Y. Matsumoto, A. Muramatsu, M. Matsumoto, M. Fukuoka, W. Ebling
Based on volume-flow relationships, CNS agents that are highly lipid soluble (log octanol-water partition coefficient > 2) are expected to have equilibration half-times (T1/2 kE0) that are proportional to brain solubility. Propofol, the most lipophi…
Based on volume-flow relationships, CNS agents that are highly lipid soluble (log octanol-water partition coefficient > 2) are expected to have equilibration half-times (T1/2 kE0) that are proportional to brain solubility. Propofol, the most lipophilic anaesthetic in clinical use, has T1/2 kE0 values of 1.7 and 2.9 min in rats and humans, respectively, compared with an expected value of at least 8 min. As a first step in exploring this discrepancy between observed and predicted values, we determined the steady state brain:plasma and brain:blood partition coefficients in rats after a 4-h infusion of propofol. Brain:plasma and brain:blood partition coefficients were 8.2 (SD 1.6) and 3.0 (0.5), respectively. T1/2 kE0 predictions based on brain: blood partitioning in rats are more in agreement with the observed equilibration half-time, suggesting that drug bound to the formed elements of blood participates in the uptake and transfer of propofol to its effect site.
Published in
British Journal of Anaesthesia
|
1
|
5 | 1998 |
Social Media Posts