Title | Claps | Level | Year | L/Y |
---|---|---|---|---|
The Dark Energy Survey: Cosmology Results with ∼1500 New High-redshift Type Ia Supernovae Using the Full 5 yr Data Set
158 auth. D. C. T. Abbott, M. Acevedo, M. Aguena, A. Alarcon, S. Allam, O. Alves, A. Amon, F. Andrade-Oliveira, J. Annis, P. Armstrong, J. Asorey, S. Ávila, D. Bacon, B. Bassett, K. Bechtol, ...
<jats:p>We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in…
<jats:p>We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 < <jats:italic>z</jats:italic> < 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-quality <jats:italic>z</jats:italic> > 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 < <jats:italic>z</jats:italic> < 0.10. Using SN data alone and including systematic uncertainties, we find Ω<jats:sub>M</jats:sub> = 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (<jats:italic>q</jats:italic>
<jats:sub>0</jats:sub> < 0 in ΛCDM) with over 5<jats:italic>σ</jats:italic> confidence. We find <jats:inline-formula>
<jats:tex-math>
</jats:tex-math>
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">M</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:mi>w</mml:mi>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mn>0.264</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>−</mml:mo>
<mml:mn>0.096</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mn>0.074</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mo>,</mml:mo>
<mml:mo>−</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mn>0.80</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>−</mml:mo>
<mml:mn>0.16</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mn>0.14</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mo stretchy="false">)</mml:mo>
</mml:math>
</jats:inline-formula> in flat <jats:italic>w</jats:italic>CDM. For flat <jats:italic>w</jats:italic>
<jats:sub>0</jats:sub>
<jats:italic>w</jats:italic>
<jats:sub>
<jats:italic>a</jats:italic>
</jats:sub>CDM, we find <jats:inline-formula>
<jats:tex-math>
</jats:tex-math>
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll">
<mml:mo stretchy="false">(</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi mathvariant="normal">Ω</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="normal">M</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>w</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>,</mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>w</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>a</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo stretchy="false">)</mml:mo>
<mml:mo>=</mml:mo>
<mml:mo stretchy="false">(</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mn>0.495</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>−</mml:mo>
<mml:mn>0.043</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mn>0.033</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mo>,</mml:mo>
<mml:mo>−</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mn>0.36</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>−</mml:mo>
<mml:mn>0.30</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mn>0.36</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mo>,</mml:mo>
<mml:mo>−</mml:mo>
<mml:msubsup>
<mml:mrow>
<mml:mn>8.8</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>−</mml:mo>
<mml:mn>4.5</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mo>+</mml:mo>
<mml:mn>3.7</mml:mn>
</mml:mrow>
</mml:msubsup>
<mml:mo stretchy="false">)</mml:mo>
</mml:math>
</jats:inline-formula>, consistent with a constant equation of state to within ∼2<jats:italic>σ</jats:italic>. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (Ω<jats:sub>M</jats:sub>, <jats:italic>w</jats:italic>) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2<jats:italic>σ</jats:italic>. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses.</jats:p>
Published in
Astrophysical Journal Letters
|
9
|
6 | 2024 |
Social Media Posts